Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Comput Biol Med ; 134: 104492, 2021 07.
Article in English | MEDLINE | ID: covidwho-1230417

ABSTRACT

Dengue, a mosquito-borne disease, has appeared as a major infectious disease globally. The virus requires its proteins to replicate and reproduce in the host cell. The NS3 protease converts the polyprotein to functional proteins with the help of the NS2B cofactor. Thus, NS3 protease is a promising target to develop antiviral inhibitors against the dengue virus. A systematic screening including ADMET properties, molecular docking, molecular dynamics (MD) simulation, binding free energy calculation, and QSAR studies is carried out to predict potent inhibitors against the NS3 protease. From the screening of 40 antiviral phytochemicals, ADMET properties analysis was used to screen out ligands that violate ADME rules and have probable toxicity. Cyanidin 3-Glucoside, Dithymoquinone, and Glabridin were predicted to be potent inhibitors against the NS3 protease according to their binding affinity. These ligands showed several noncovalent interactions, including hydrogen bond, hydrophobic interaction, electrostatic interaction, pi-sulfur interactions. The ligand-protein complexes were further scrutinized using 250 ns molecular dynamics simulation. The MM-PBSA binding free energy calculation was conducted to investigate their binding stability in dynamic conditions. The calculated pIC50(mM) value was predicted using the QSAR model with 89.91% goodness of fit. The predicted biologocal activity value for the ligands indicates they might have good potency.


Subject(s)
Dengue Virus , Animals , Antiviral Agents/pharmacology , Molecular Docking Simulation , Peptide Hydrolases , Phytochemicals/pharmacology , Protease Inhibitors/pharmacology
2.
J Biomol Struct Dyn ; 40(4): 1639-1658, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-851512

ABSTRACT

In viral replication and transcription, the main protease (Mpro) of SARS-CoV-2 plays an important role and appears to be a vital target for drug design. In Mpro, there is a Cys-His catalytic dyad, and ligands that interact with the Cys145 assumed to be an effective approach to inhibit the Mpro. In this study, approximately 1400 cysteine-focused ligands were screened to identify the best candidates that can act as potent inhibitors against Mpro. Our results show that the selected ligands strongly interact with the key Cys145 and His41 residues. Covalent docking was performed for the selected candidates containing the acrylonitrile group, which can form a covalent bond with Cys145. All atoms molecular dynamics (MD) simulation was performed on the selected four inhibitors including L1, L2, L3 and L4 to validate the docking interactions. Our results were also compared with a control ligand, α-ketoamide (11r). Principal component analysis on structural and energy data obtained from the MD trajectories shows that L1, L3, L4 and α-ketoamide (11r) have structural similarity with the apo-form of the Mpro. Quantitative structure-activity relationship method was employed for pattern recognition of the best ligands, which discloses that ligands containing acrylonitrile and amide warheads can show better performance. ADMET analysis displays that our selected candidates appear to be safer inhibitors. Our combined studies suggest that the best cysteine focused ligands can help to design an effective lead drug for COVID-19 treatment. Communicated by Ramaswamy H. Sarma.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors , SARS-CoV-2 , COVID-19 , Cysteine , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Structure-Activity Relationship , COVID-19 Drug Treatment
3.
J Biomol Struct Dyn ; 39(9): 3213-3224, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-143889

ABSTRACT

The main protease of SARS-CoV-2 is one of the important targets to design and develop antiviral drugs. In this study, we have selected 40 antiviral phytochemicals to find out the best candidates which can act as potent inhibitors against the main protease. Molecular docking is performed using AutoDock Vina and GOLD suite to determine the binding affinities and interactions between the phytochemicals and the main protease. The selected candidates strongly interact with the key Cys145 and His41 residues. To validate the docking interactions, 100 ns molecular dynamics (MD) simulations on the five top-ranked inhibitors including hypericin, cyanidin 3-glucoside, baicalin, glabridin, and α-ketoamide-11r are performed. Principal component analysis (PCA) on the MD simulation discloses that baicalin, cyanidin 3-glucoside, and α-ketoamide-11r have structural similarity with the apo-form of the main protease. These findings are also strongly supported by root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), and solvent accessible surface area (SASA) investigations. PCA is also used to find out the quantitative structure-activity relationship (QSAR) for pattern recognition of the best ligands. Multiple linear regression (MLR) of QSAR reveals the R2 value of 0.842 for the training set and 0.753 for the test set. Our proposed MLR model can predict the favorable binding energy compared with the binding energy detected from molecular docking. ADMET analysis demonstrates that these candidates appear to be safer inhibitors. Our comprehensive computational and statistical analysis show that these selected phytochemicals can be used as potential inhibitors against the SARS-CoV-2.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Peptide Hydrolases , Phytochemicals/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL